
Smart Contract Security Audit Report
for Gala.Games ERC20

AnChain.AI Inc.

Auditors: AnChain.AI Audit Team

Contact: Audit@AnChain.ai

Date: 2020-09-09

Index
1. Introduction

1. Audit Info
2. Methodology
3. Environment

2. Executive Summary

1. Key Findings
3. Smart Contract Scope

1. Audited Source Code File
4. Vulnerability Audit

5. Business Logic Audit

6. Gas Consumption Analysis

7. Conclusion

8. Appendix

1. Vulnerability Technical Explanation
2. Severity Level
3. Reference

9. Disclaimer

1. Introduction

1.1 Audit Info

This document includes the results of the security audit for the client’s smart contract code Gala.Games ERC20 as
found in the section 3. The security audit was conducted by the AnChain.AI team from Sep 04, 2020, to Sep 09, 2020.

The purpose of this audit is to review source code, functionality on test net, and provide feedback on the design,
architecture, and quality of the source code with an emphasis on validating the correctness and security of the
software in its entirety.

1.2 Methodology

AnChain.AI team adopts a suite of tools and best practice from cybersecurity to audit smart contract source code for
vulnerabilities.

3 key aspects in the AnChain.AI security audit methodology:

Vulnerability audit. We use various tools to scan for known vulnerabilities, including our proprietary CAS
sandbox.
Statistical audit. Our sandbox will predict the risk score for the audited code with hundreds of thousands of
mainnet smart contracts to understand security stance.
Business logic audit. Our experts will design specific test cases to cover the key custom functions, to identify
potential risk exposures.

1.3 Environment

Compiled Version: Solidity Compiler v0.6.12+commit.27d51765

Compiled System: macOS

Compiled Tool: Remix IDE, Truffle

File Name Md5

Address.sol 924db4c2ed840ce3a4a968a3e3c7b633

Context.sol 68e2547567157fd1daba6b64e9b39bd7

ERC20.sol adf7d466b64969bf49a6023209943021

ERC20Burnable.sol 3f26d66d1782e796516bac2025c7e97b

Gala.sol c9c6dc0f7c291c402190155c3e860e89

IERC20.sol 0a6d3d7703195ab5b26cac4ad6ef464d

MinterRole.sol 6c3505f09dfb1d4f16959f6c854df26d

Roles.sol 6bccbc8b6cfd8d80a42bd0ace68586ae

SafeMath.sol 72f5a806b2330b83f92380adb5e5a0f3

2. Executive Summary

2.1 Key Findings

We did not identify high severity vulnerabilities that would compromise the integrity of the project. This ERC20

token smart contract meets the AnChain.AI smart contract auditing standards.

3. Smart Contract Scope

3.1 Audited Source Code File

Type Status

Numerical Overflow PASS

Authorization Check PASS

Transaction Ordering Dependency PASS

Parity Multisig Bug PASS

Random Number Practice PASS

Re-entrancy PASS

Function Visibility PASS

Event Emitting PASS

ERC1155 Token Formatting PASS

4. Vulnerability Audit

4.1 Vulnerability Checklist

tool Remix IDE

version solc v0.6.12+commit.27d51765

result PASS

file name n/a

before n/a

after n/a

Network Local Testnet

Result PASS

5. Business Logic Audit
This section is dedicated to the functionality test of the audited smart contract. The purpose is to cover the main
business logic for completeness and correctness.

The smart contract has been deployed on Testnet, with the specified environment and parameters.

Compile Test

Code modification for compiling

There is no code modification for this audit.

Deployment Test:

must emit MinterAdded event with parameter (account) PASS

must reflect correct value changes PASS

the caller must be contract owner PASS

account must not be a minter PASS

standard add minter PASS

add minter without contract owner authority PASS

add already existed minter PASS

must emit MinterRemoved event with parameter (account) PASS

must reflect correct value changes PASS

the caller must be contract owner PASS

account must be a minter PASS

5.1 addMinter

 description

 Grant Minter authorization to account.

 specification

 test cases

5.2 removeMinter

 description

 Remove Minter authorization from account.

 specification

function addMinter(address account) public override onlyOwner;

function removeMinter(address account) public onlyOwner;

standard remove minter PASS

remove minter without contract owner authority PASS

remove non existed minter PASS

must emit MinterRemoved event with parameter (msg.sender) PASS

must reflect correct value changes PASS

the caller must have minter authorization PASS

standard renounce minter PASS

renounce minter without minter authority PASS

 test cases

5.3 renounceMinter

 description

 Renounce the caller's Minter authorization.

 specification

 test cases

5.4 approve

 description

 Sets amount as the allowance of spender over the owner's tokens.

function renounceMinter() public;

function approve(
 address spender,
 uint256 amount
) virtual override returns (bool);

must emit Approval event with parameter (owner, spender, value) PASS

must reflect correct value changes PASS

set approval for one spender PASS

set approval for multiple spenders PASS

must emit Approval event with parameter (owner, spender, updated_allowance) PASS

must reflect correct value changes PASS

increase allowance for one spender PASS

increase allowance for multiple spenders PASS

 specification

 test cases

5.5 increaseAllowance

 description

 Atomically increases the allowance granted to spender by the caller.

 specification

 test cases

5.6 decreaseAllowance

function increaseAllowance(
 address spender,
 uint256 addedValue
) public virtual returns (bool);

function decreaseAllowance(
 address spender,
 uint256 subtractedValue
) public virtual returns (bool);

must emit Approval event with parameter (owner, spender, updated_allowance) PASS

must reflect correct value changes PASS

subtractedValue must be less or equal to current allowance PASS

decrease allowance for one spender PASS

decrease allowance for multiple spenders PASS

subtractedValue is greater than allowance PASS

must emit Transfer event with parameter (msg.sender, address 0x0, amount) PASS

must reflect correct value changes PASS

total supply is decreased by amount PASS

amount must be less or equal to the caller balance PASS

standard burn PASS

burn more than owned quantity PASS

 description

 Atomically decreases the allowance granted to spender by the caller.

 specification

 test cases

5.7 burn

 description

 Destroy amount quantities of token from the caller balance.

 specification

 test cases

function burn(uint256 amount) public virtual;

must emit Transfer event with parameter (account, address 0x0, amount) PASS

must reflect correct value changes PASS

must have sufficient allowance PASS

total supply is decreased by amount PASS

amount must be less or equal to account balance PASS

standard burn PASS

burn more than owned tokens PASS

burn more than allowance PASS

5.8 burnFrom

 description

 Destroy amount quantities of token from the account balance.

 specification

 test cases

5.9 mintBulk

 description

 Mint tokens with quantity extracted from each element of amounts[] to the corresponding element of accounts[].

function burnFrom(
 address account,
 uint256 amount
) public virtual;

function mintBulk(
 address[] memory accounts,
 uint256[] memory amounts
) public onlyMinter returns (bool);

must emit Transfer event with parameter (address 0x0, accounts[i], amounts[i]) PASS

length of accounts[] must be equal to length of amounts PASS

authorization must be minter PASS

quantity of minted tokens must not exceed cap PASS

quantity of minted tokens must be greater than 0 PASS

must reflect correct value changes PASS

standard mint PASS

mint without minter authorization PASS

mint tokens exceeding cap PASS

mint 0 token PASS

length of accounts is not equal to length of amounts PASS

 specification

 test cases

5.10 transfer

 description

 Transfer amount quantity of tokens from the caller to recipient.

function transfer(
 address recipient,
 uint256 amount
) public virtual override returns (bool);

must reflect correct value changes PASS

must not allow transfer to zero address PASS

the caller must have sufficient balance to send token(s) PASS

must emit Transfer event with (msg.sender, recipient, amount) PASS

standard transfer tokens PASS

send more than owned quantities PASS

send to 0 address PASS

must reflect correct value changes PASS

must not allow transfer from/to zero address PASS

the caller must be an authorized operator of sender PASS

sender must have sufficient balance to send token(s) PASS

the caller must have sufficient allowance to send token(s) PASS

must emit Transfer event with (sender, recipient, amount) PASS

must emit Approval event with (sender, msg.sender, updated_allowance) PASS

 specification

 test cases

5.11 transferFrom

 description

 Transfer amount quantity of tokens from sender to recipient.

 specification

function transferFrom(
 address sender,
 address recipient,
 uint256 amount
) public virtual override returns (bool);

standard transferFrom PASS

send tokens more than the balance of sender PASS

transfer with allowance PASS

transfer exceeding allowance PASS

send from/to zero address PASS

Function Name Gas Consumption

addMinter ~25,000

removeMinter ~20,000

renounceMinter ~15,000

approve 30,000~45,000

increaseAllowance ~30,000

decreaseAllowance ~30,000

burn ~35,000

burnFrom 30,000~45,000

mintBulk ~25,000 + 15,000/iteration

transfer ~50,000

transferFrom ~50,000

 test cases

Recommendation

It is recommended to forbid function call with zero values to eliminate meaningless transactions, depending on

operation scenario of the project team.

6. Gas Consumption Analysis
We tested gas consumptions of main functions, and all results are within normal gas consumption range.

7. Conclusion
The audited contract source code implemented the standard erc20 & erc20 burnable token contract[1], with additional

implementation of Address library & Roles library. There is no vulnerability found in this contract.

8. Appendix

8.1 Vulnerability Technical Explanation

These vulnerability scannings are powered by the patented AnChain.AI CAS (Smart Contract Auditing Sandbox),
including static analysis, dynamic analysis, and statistical analysis.

Numerical Overflow

Severity Level: high

In ETH, failing to run a numerical check on arithmetic operations may cause the values to overflow or underflow,
which may cause crypto asset loss. It is a good practice to use “SafeMath” library for all the numeric operations to
take care of overflow and underflow issue of all the numeric operations.

The code provided pass the ‘numerical overflow’ vulnerability check.

Authorization

Severity Level: high

Parameters passed into a function should be consistent with the actual caller.

The best practice is to use ‘require()’ to check if the user executing the action matches the provided parameter.

The code provided pass the ‘Authorization’ vulnerability check.

Transaction Ordering Dependency:

Severity Level: high

In ETH, timestamp of a transaction getting approved can be manipulated by vicious minors. Transaction Ordering
Dependency refer to critical logic fault if minors approve the later submitted transaction PRIOR than the earlier ones.

Transaction ordering dependency does not have critical impact on this contract.

Parity Multisig Bug/ Delegate Call:

Severity Level: High

The code does not call any external contracts and thus there is no issue about parity multisig bug.

Random Number

Severity Level: High

Random number generator algorithm should not use predictable seeds.

The code does not generate or use any random number, and thus there is no issue about the random number issue.

The code provided pass the "Random Number" vulnerability check.

Re-entrancy Attack:

Severity Level: High

The code does not contain any function that is vulnerable to re-entrancy attack.

Function Visibility:

Severity Level: Low

The code does not contain any function that is improperly set with visibility.

Event Emitting:

Severity Level: Low

The ERC code has emit transfer & approval event properly, which meets a ERC token standard.

ERC Token Standard:

Severity Level: Low

The token contract has the following variables: name, symbol, decimal, totalSupply, which meets the ERC token
standard.

Level Description

High The issue poses an existential risk to the project, and the issue identified could lead to massive financial
or reputational repercussions.

Medium The potential risk is large, but there is some ambiguity surrounding whether or not the issue would
practically manifest.

Low The risk is small, unlikely, or not relevant to the project in a meaningful way.

Code
Quality

The issue identified does not pose any obvious risk, but fixing it would improve overall code quality,
conform to recommended best practices, and perhaps lead to fewer development issues in the future.

8.2 Severity Level

8.3 Reference

[1]. OpenZeppelin ERC20 documentation. Retrieved from https://docs.openzeppelin.com/contracts/2.x/api/token
/erc20

[2]. OpenZeppelin ERC20 source code. Retrieved from https://github.com/OpenZeppelin/openzeppelin-contracts/t
ree/9b3710465583284b8c4c5d2245749246bb2e0094/contracts/token/ERC20

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/9b3710465583284b8c4c5d2245749246bb2e0094/contracts/token/ERC20

9. Disclaimer

Disclaimer - Smart Contract Auditing - ETH

AnChain.ai makes no warranties, either express, implied, statutory, or otherwise, with respect to the services or
deliverables provided in this report, and AnChain.ai specifically disclaims all implied warranties or
merchantability, fitness for a particular purpose, noninfringement and those arising from a course of dealing,
usage or trade with respect thereto, and all such warranties are hereby excluded to the fullest extent permitted by
law.

AnChain.ai will not be liable for any lost profits, business, contracts, revenues, goodwill, production, anticipated
savings, loss of data, or costs of procurement of substitute goods or services or for any claim or demand against
the company by any other party. If no event will AnChain.ai be liable for consequential, incidental, special,
indirect, or exemplary damages arising out of this agreement or any work statement, however caused and (to the
fullest extent permitted by law) under any theory of liability (including negligence), even if AnChain.ai has been
advised of the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by the client's team and only
the source code AnChain.ai notes as being within the scope of AnChain.ai’s review within this report. This report
does not include an audit of the deployment scripts used to deploy the contracts in the repository corresponding
to this audit. Specifically, for the avoidance of doubt, this report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or team, and it is not a
guarantee as to the absolute security of the project. In this report you may through hypertext or other computer
links, gain access to websites operated by persons other than AnChain.ai. Such hyperlinks are provided for your
reference and convenience only and are the exclusive responsibility of such websites’ owners. You agree that
AnChain.ai is not responsible for the content or operation of such websites and that AnChain.ai shall have no
liability to your or any other person or entity for the use of third party websites. AnChain.ai assumes no
responsibility for the use of third-party software and shall have no liability whatsoever to any person or entity for
the accuracy or completeness of any outcome generated by such software.

	Smart Contract Security Audit Report 		for Gala.Games ERC20
	AnChain.AI Inc.
	Index
	1. Introduction
	1.1 Audit Info
	1.2 Methodology
	1.3 Environment

	2. Executive Summary
	2.1 Key Findings

	3. Smart Contract Scope
	3.1 Audited Source Code File

	4. Vulnerability Audit
	4.1 Vulnerability Checklist

	5. Business Logic Audit
	5.1 addMinter
	5.2 removeMinter
	5.3 renounceMinter
	5.4 approve
	5.5 increaseAllowance
	5.6 decreaseAllowance
	5.7 burn
	5.8 burnFrom
	5.9 mintBulk
	5.10 transfer
	5.11 transferFrom

	6. Gas Consumption Analysis
	7. Conclusion
	8. Appendix
	8.1 Vulnerability Technical Explanation
	8.2 Severity Level
	8.3 Reference

	9. Disclaimer

